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Advanced Node Formulations in TLM—The
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Abstract—The paper describes the development of a class of
adaptable symmetrical condensed (ASCN) transmission-line mod-
eling (TLM) nodes. The parameters and numerical properties of
the ASCN are expressed in terms of arbitrary weighting functions
which can be selected in a manner that minimizes dispersion and
improves accuracy. It is shown that this approach is effective and
can be used to optimize nodal properties according to problem
requirements.

1. INTRODUCTION

HE PROCESS of discretization in space, inherent to

all numerical solution schemes, introduces propagation
errors in the transmission-line modeling (TLM) method. Dis-
persion analysis of three-dimensional (3-D) TLM schemes,
modeling free space on a cubic node mesh, shows that the sym-
metrical condensed node (SCN) exhibits substantially smaller
propagation error than the expanded node (EN) and an equiv-
alent Yee’s finite-difference time-domain (FDTD) scheme [1].
Additional propagation errors are, however, introduced when
modeling nonuniform materials and/or using noncubic nodes
and this can eliminate the primary advantage of the SCN
over the EN [2]-[5]. These errors decrease as space resolution
increases, but there are practical limitations, brought about by
run-time and storage requirements, to the extent that accuracy
can be improved in this way. Hence, other approaches are
explored here to develop more accurate schemes based on the
SCN.

Local deviation in material properties and changes of cell
aspect ratio are described in the TLM SCN by adding stubs
and/or modifying the link line impedances [6]-[9]. Based on
the TLM constitutive equations [10], an infinite set of SCN-
based schemes can be developed. All these schemes can be
unified through the formulation of a general SCN (GSCN)
[11], [12]. Applying additional constraints to the GSCN, the
traditional stub-loaded SCN [6], hybrid SCN (HSCN) [7],
symmetrical super-condensed node (SSCN) [8] and matched
SCN (MSCN) [9], as well as other new, hitherto unexplored,
schemes, can be derived.

The dispersion analysis of the various SCN-based TLM
schemes suggests that stub-loading and changing of the link-
line impedances make opposing contributions to the dispersion
{41, [9], [13]. In this paper, we exploit these effects to develop
a class of novel nodes, with a mix of links and stubs which
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secure advantageous dispersion properties. As these nodes can
be customized (adapted) through arbitrary weighting functions,
they are referred to as the adaptable SCN (ASCN).

In this paper, the complete theoretical development of the
ASCN for a uniform mesh is presented first, including the
dispersion analysis and the derivation of possible optimiz-
ing weighting functions. Then, the parameters and numerical
properties of the noncubic ASCN for a graded mesh are
investigated and, finally, the theoretical results are validated
by simulations of partially filled waveguides.

II. ADAPTABLE NODE FOR THE UNIFORM MESH

The parameters of a GSCN must satisfy the TLM consti-
tutive relations, which can be written in a compact form as

9]

Yor  AiAj
Yoot Yor + 57 = e Xpas M
Zy  AiAj
Zig ¥ 2ot 5" = R ALA @)
where 4,5,k € {z,y,2} and i # j,k with ¢ = epe, and

i = poptr. The characteristic impedance and admittance of
1-directed, j-polarized link lines are denoted by Z,; and Y,,,
respectively. The admittance of an open-circuit stub and the
impedance of a short-circuit stub, coupling with the field
components in the %k direction, are denoted by Y, and Zgp,
respectively.

In the case of the general node for a uniform mesh of
node spacings Az = Ay = Az = Al, the TLM constitutive
relations ( 1)—(2) reduce to

Y, Al
Z Al
5 _ 4

where
Zy =1)Yy = Zoy = Zy, = Zzo
In =1V, =2y, = Z,y = Z,,
Yo =Yoo = Yoy = Yo,
Ls = Zsw = lisy = Zsz.
If we specify that the link lines will model a proportion of

the medium parameters denoted by (w.e, w, 1), where w, and
w,, are arbitrary dimensionless weights, it follows that

Al
Yo+Y, = weaE (3)
Al

Zn+ Zy = wupg. (6)
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Relating the velocity of pulses on the link lines to the wave
velocity in free-space (background medium) as [14]

a2 ™
At \Jfeoko

and solving (5) and (6), the link-line impedances are obtained
as

Zn=Z1A Z,=7/A @)

where

7z, =7, |2 ©)

We

WeWy fhrr — 1. (10)

A=A = JwWylirer £

The parameters of the stubs, used to model the remaining
proportion of the medium properties, can be obtained by
inserting (5)—(6) into (3)—(4) and making use of (7), as

Y, = 4Y /e pir (1 — we) an
Zs =4Z\fe (1 — wy) (12)

where Z = 1/Y = \/u/e.

The parameters of the GSCN for a uniform mesh are
therefore defined by (8)—(12) in terms of the arbitrary weights
we and w,. For example, the stub-loaded SCN is defined by
(8)—(12) if w. = 1/e, and w, = 1/p,. Similarly, selecting
we = 1/{eppr) and w, = 1, the HSCN is formulated. In the
case of the SSCN, the requirements are w, = w, = 1, while
for the MSCN we need w. = wy, = 1/\/E-fir.

The dispersion behavior of the available condensed nodes
can be interpreted through parameters w. and w,. For exam-
ple, dispersion in the stub-loaded SCN is dependent on the
ratio &,/ u, for e,.p, = const [2]-[4], which is a direct result
of w, and w,, not being functions of the product &, p,.. Simi-
larly, two solutions to the dispersion relation, corresponding to
different field polarizations, are experienced in the stub-loaded
SCN and the HSCN [2], [4], [5], which is a consequence
of selecting w. # w,. As this behavior is at variance with
Maxwell’s equations, we avoid it in the development of the
ASCN, presented here, by choosing w. = w, = w, where
w is a function of the product &,4,.. The parameters of the
ASCN, normalized to the impedance and admittance of the
modeled medium, Z and Y, can be obtained, after inserting
we = w, = w in (8)~12), as

In=A Z,=1/A (13)
Y, = Zy = 4/Er (1 — w) (14)

where
A= A1 =w\/lle, £ VWipe, — 1. (15)

Note that two solutions exist for A. It can be readily proved
that Ay = 1/A,. Hence, choosing different signs in (15) will
swap values of Z,, and Z,,. As shown later, both solutions are
physical.

In order to satisfy the requirement that the link and stub
parameters are real and nonnegative numbers, it follows from
(14) that w < 1 and from (15) that w > 1/,/e.f,. The
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SSCN and the MSCN can be considered as special, limiting
cases of the adaptable node with w = 1 and w = 1//g- 41,
respectively.

Using the definition of scattering in the general condensed
node [12], the scattering properties of the ASCN can be
readily obtained. Following the approach described in [3], the
dispersion relation of the ASCN can be obtained from the
general dispersion relation [1] in an implicit polynomial form
as

B
cos 48 + By cos 30 + By cos 20 + Bz cosf + —2—4 =0 (16)

where § = 27 fAt and
By =251 (1 —w)+4
By = w?u?(2s1 + s2) + w?(3s9 — 251) — dw(sy + 259)
+4(s1 +s2+1)
By = —2w3u?(3s3 + 2s3) — 2w(s3 — 253)
4+ 2uu?(3s3 4 4so + 4s1) + 2w2(933 — 439 — 4387)
— 2w(12s83 — 81) + 2(4s3 — 81 — 2)
By = —4w?u®(3s3 + 283) + 4w>(Ts3 + 253)
+ 2w (653 + Tsy + 651) — 2w?(30s3 + 115y + 651)
+ 8w(6s3 + 282 + s1) — 2(8s3 + 4s9 + 451 + 5)
with
1

w2e, iy
s1=cyteytec,

u=4/1—

82 = CzCy + CyCy + C2Cy

§3 = CyCyCy

and ¢, = cos(k,Al) — 1, ¢y = cos(kyAl) — 1 and ¢, =
cos(k.Al)—1, where k., k,, and k, are Cartesian components
of the propagation vector. Note that the dispersion relation is
obtained in terms of the weighting function w and that it is
independent of the selection of the 4+ or — sign appearing in
(15).

Since the SSCN and the MSCN can be considered as the two
limiting cases of the ASCN, we first examine their dispersion
behavior. Note that the SSCN does not use stubs at all and
therefore all excess material parameters are modeled solely
through the variation of the link-line impedances. In contrast
to this, in the MSCN the characteristic impedance of link
lines is the same and matches the intrinsic impedance of the
medium, hence all excess material parameters are modeled
exclusively through the stubs [9]. From the dispersion analysis
it can be seen that these two approaches in modeling the
variation in material parameters have opposing effects on
propagation errors. This is illustrated in Fig. 1 by plotting the
relative deviation in the propagation vector for a benchmark
discretization of ten nodes per wavelength, referred to as the
normalized propagation error [4]. The error is presented for
three principal propagation directions: along an axis (e.g.,
[1,0,0]), a diagonal in a coordinate plane (e.g., [1,1,0]) and
the space diagonal ([1,1,1]).

The weighting function for the ASCN can have any value
limited by w = 1/\/é;f1, (MSCN) and w = 1 (SSCN). In
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Fig. 1. Percentage propagation error in the MSCN and the SSCN for
Alfx = 0.1.

e

order to compensate errors occurring in the MSCN and SSCN,
the weighting function w of the ASCN could be chosen as a
suitable mean of these limits, for example, the arithmetic and
_geometric means, given by

We = —_.__W and Wy = 1
2\/Erpir Y Er Ly
respectively. The weighting function w can be also selected
according to problem requirements, for example, demanding
minimal propagation error for the axial direction. By inserting
kzAl = 20./e p, and ky = k. = 0 in (16) and solving for
w, we obtain

_cos(6) + cos(20,/€, i) 1
YT Teos(@8yEm) — 1 2e,me(L - cos(d))’

It can be seen from (18) that the solution for w is, of course,
dependent on § = 27 fAt, i.e., on the frequency. Since TLM
operates with several nodes per wavelength, corresponding to a
relatively low frequency, the limit of (18) can be sought when
f — 0, leading to a surprisingly simple result for w given by
_ 1+ 2e, by

W = Wy =
3, phr

a7

18

(19)

Using the three functional forms of w described by (17) and
(19), the propagation errors of the ASCN for three principal
propagation directions are plotted in Fig. 2. A comparison
between the propagation errors of the ASCN, plotted in Fig. 2,
and those of the SSCN and the MSCN plotted in Fig. 1,

clearly demonstrates that the error in the ASCN, for any of

the weighting functions used, is indeed contained between the
errors of the MSCN and the SSCN. A direct result of this is
that the error range in the ASCN with w = w, and particularly
with w = w,, is significantly smaller than in the SSCN and
MSCN. .

Fig. 3 shows the percentage propagation error for the ASCN
with w = w,, for different values of ¢,u, and for propagation
along the coordinate plane y = 0 and the diagonal plane
x = y. The error is plotied versus the angle ¢ formed by the
propagation vector and the z-axis. In this case, propagation
along directions [m,0,n] (coordinate plane), and [m,m,n]
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Fig. 2. Percentage propagation error in the ASCN for Al/A = 0.1 using
Wy, Wq, and wy.

(diagonal plane) can be studied. Some of these directions are
indicated in the figure. It can be seen from Fig. 3 that errors in
the ASCN with w = w,, extend only in the positive direction
(unilateral dispersion) and increase slowly with an increase in
Epfbr-

Fig. 4 compares the propagation errors for the ASCN (w =
w,,) with those obtained using the MSCN and the SSCN, for
propagation along the diagonal plane z = y. It is evident
from this plot that a substantial reduction in propagation errors
is obtained with the ASCN, allowing for a more accurate
modeling of nonuniform problems in TLM than was allowed
by the previous nodes.

1II. ADAPTABLE NODE FOR A GRADED MESH

Parameters of the noncubic ASCN used in a graded mesh
can be obtained from the general TLM relations (1)—(2) using
a similar procedure as for the cubic ASCN. The proportion of
the medium properties modeled by the link lines alone can be
written for a graded node as

AiAj

Yie + Y = WekE 777 (20)
AiA;j

Zij+ Zj; = Wakk A As 2D

Using a similar reasoning as before, to avoid polarization-
dependent dispersion solutions, we choose wex = wur = wg.
With this condition, the system of six equations, (20)—(21),
formed by using all possible combinations of i,j,k €
{z,y, 2}, can be solved in a similar manner as the system
of equations describing the parameters of the graded SSCN
[8]. Introducing

Al = Niyfwjwy (22)
for all combinations of %, j,k € {z,y, 2} into (20)-(21), the
normalized admittances of the link lines are obtained as

A Ai' AR Cy;

Vi = VI pn7 23)
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Fig. 3. Percentage propagation error in the ASCN (w = w,) for prop-
agation along (a) coordinate plane y = 0 and (b) diagonal plane = y
(Al/X = 0.1).

For (i,4,k) € {(,9,2),(y,2,%),(2,,y)}, the normalized
capacitance C; [8] is

) 2AF)2(AK)? + B

= 24
R N N E N g e YR
with
Ay Az A 2
Bia=Ax \/A2 _ PATAYAZAY) (25)
ep
and

1 1 1
A= (Az / N2 it - — _ X
e v e
(26)
The remaining three normalized capaéitances are obtained as

@7)

~

ij =1- CA'”

Following the procedure outlined for the SSCN in [8], the
maximum time step is determined from (25) as
‘ epuH

2cos [ arccos(H3/G)]

Atmax =

(28)
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Fig. 4. Comparison of propagation errors in the ASCN with w = w,, (solid
lines), the SSCN (dotted lines) and the MSCN (broken lines) for Al/A = 0.1
and -y € {2,4,8,16}(direction of the increase in &y, is denoted by
arrows).

where

3 / / 7
H = \/(Ax’)—z Ay + (A7) G =Ax"Ay' Az,
Finally, the parameters of the stubs, used to model the remain-
ing proportion of the medium properties, can be obtained by
inserting (20)—(21) into (3)—(4), as
N - AiAj
Yok: = Zsk - 2@ AEA?
The presence of three weighting functions in the definition
of the graded ASCN offers great flexibility for optimizing
nodal properties. Weighting functions w,, w,, and w, can
be selected either independently or selected to be equal,
Wy = wy = w, = w. As an example, we give the analysis
of the latter case.
As in the case of cubic nodes, the graded ASCN simplifies
to the graded SSCN when w = 1. It is known that the SSCN
exhibits the lowest numerical dispersion when operating on its

(1 - wg). 29)

‘maximum time step [15]. This dispersion is generally lower

than that for the other available schemes, e.g., the HSCN [13],
but it increases rapidly when the SSCN operates on a time
step lower than the maximum one. Since the SSCN scheme
provides the highest possible time step for a given node aspect
ratio [8], the weighting function of the ASCN could sensibly be
selected in a manner to give w = 1 when At = At,x. In the
SSCN, as a limiting case of the ASCN (w = 1), all deviations
in the wave velocity are modeled through the variation of link-
line impedances. Another limiting case is when the deviations
in velocity are modeled exclusively through the stubs, which
is obtained by choosing w = Wmin = At/Atpnax. In this case,
the ASCN behaves in a similar manner as the MSCN—in fact,
for a cubic node mesh it follows that

At 1 -
Abmax  /Erfir ’ (

and the ASCN with wp, reduces to the MSCN. As an
example, Fig. 5 shows that by decreasing the time step, the
initial propagation error is shifted in the opposite directions
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Fig. 5. Percentage propagation error in graded ASCN (Axz = 2Ay = Az)
for discretization of Az/A = 0.1 and propagation in coordinate plane z = ¢
(¥ is angle formed by the propagation vector and the z-axis).

when using the two limiting choices of w, that is, w = 1
and w = wpis. Hence, to compensate errors, the optimization
of the graded ASCN can be achieved by obtaining weighting
functions as an average of At/Afy.x and unity.

Making use of (30), the weighting functions described by
(17) and (19) for a cubic ASCN can be rewritten in terms of
At/ Atmax, and used for the graded ASCN. For example, the
propagation error for a graded ASCN with w = w,, is shown
in Fig. 5. It is evident from the plot that the propagation error
with w = w,, is constrained by the two extreme cases and is
very low. ’

IV. NUMERICAL EXAMPLES

In order to confirm the predicted numerical properties of
the adaptable nodes explored above, we modeled a partially
filled canonical waveguide (¢ = 2.286 cm, b = 1.016 cm,
h =b/3, e, = 2.56), depicted in Fig. 6, using a uniform TLM
mesh with node spacing Al = b/12. TLM simulations were
performed using adaptable nodes with weighting functions
w = w, (denoted by ASCN), w = 1 (SSCN), w = 1/,/er[ir
(MSCN), as well as using the HSCN (which in this case
equals the traditional stub-loaded SCN). Two sets of results
were obtained with the SSCN and the ASCN by swapping
values of Z, and Z,. The analytical cutoff frequencies of
the hybrid TEY modes were obtained using the transverse
resonance method [16]. A summary of the cutoff frequencies
obtained for the first four hybrid TEY,, modes is presented
in Table I. ; ,

As expected, all results converge to the analytical solutions
and results obtained with the ASCN are always between the
results obtained with the SSCN and the MSCN. In order to
. facilitate comparison of these results with the predictions based
on the dispersion analysis, we calculated propagation errors
normalized to 10 nodes per wavelength in the dielectric, by
using the formula [3]

=l d (A()i/lA)2 v <Al<;01;a)2 b
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Fig. 6. Partially loaded rectangular waveguide.

TABLE I
Curorr FREQUENCIES IN GHz

' TEg, | TE{, | TEj | TEj

Analytical | 12.612 |°'13.734 | 16.544 | 20.120

- SSCN;, 12.597 | 13.692 | 16.474 | 19.999

SSCN, 12.580 | 13.703 | 16.462 | 19.934

ASCN; 12.617 | 13.721 | 16.515 | 20.067

ASCN; 12.606 | 13.728 | 16.508 | 20.027

MSCN 12.631 | 13.747 | 16.548 | 20.115

HSCN 12.626 | 13.744 | 16.546 | 20.116

: TABLE II
PERCENTAGE NORMALIZED PROPAGATION ERRORS
“TEy, | TEY | TEY | TES, |

SSCN; +0.357 | +0.789 | 4+0.765 | +0.732
SSCN, +0.774 | +0.580 | +0.895 | +1.129
SSCN(aver.) | +0.565 | +0.684 | +0.830 | +0.930
ASCN,; -0.132 | +0.238 | +0.319 | +0.320
ASCN, +0.138 | +0.106 | +0.394 | +0.562
ASCN(aver.) | +0.002 | +0.172 | +0.357 | +0.441
MSCN -0.473 | -0.253 |-0.039 } +0.030
HSCN ‘|1 -0.351 | -0.196 | -0.017 | +0.024

where f and f; are the modeled and analytical frequencies and
c is speed of light. A summary of these errors is presented
in Table II, together with the averaged errors of the results
performed by two versions of the ASCN and the SSCN.

1t can be seen from Table II that the error pattern for the axial
propagation follows the theoretical predictions, that is, the
error for TEY;, mode is smallest for the ASCN. To investigate
the error distribution for other directions of propagation, we
obtain components of the propagation vector in the dielectric
[16] and calculate the angle between the propagation vector
and the y-axis for each particular mode. We plot, using
different symbols, the averaged normalized propagation errors
of the ASCN, SSCN and MSCN versus this angle in Fig. 7. In
the same figure, we also plot, using dotted lines, the normalized
propagation error obtained by solving the dispersion relation
(16) for &, = 2.56. These errors apply when the waveguide
is fully loaded by the dielectric, hence they can be used as
an estimate for the maximum error in the problem. On the
other hand, an estimated error for the air-filled waveguide
is calculated from (16) and plotted using a broken line. The
expected error for each of the nodes should fall in the regions
bounded by this broken line (air) and an appropriate dotted
line (dielectric). As can be seen from Fig. 7, the averaged
errors obtained from the TLM simulations with ASCN, SSCN
and MSCN show an excellent agreement with the theoretical
estimate. :
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Fig. 7. Comparison of theoretical estimate and numerical results for the
propagation error. Dotted lines show theoretical propagation error normalized
to Al/A = 0.1 in a waveguide fully loaded by dielectric (¢ = 2.56), while
the broken line shows the error for an air-filled waveguide. Symbols show
errors obtained by TLM simulations of the partially filled waveguide.

V. CONCLUSION

Using the framework of the GSCN, we have developed a
class of new ASCN’s for the TLM method, whose numerical
properties can be customized by arbitrary weighting functions.
The formulation of the parameters and the dispersion relation
of the ASCN offers a powerful practical tool for constructing
an optimal nodal configuration by directly investigating disper-
sion solutions. By exploiting opposite contributions of stubs
and link lines to the dispersion, we developed and presented
some of the possible weighting functions which minimize
propagation errors. The improved accuracy of these schemes
was illustrated by the example of modeling an inhomogeneous
waveguide. The possibility, opened up by the ASCN, for
developing an infinite set of new nodes by simply altering
the weighting functions can, no doubt, be further exploited in
order to determine other optimal schemes.
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